Overlap laser welding of 5052-H36 aluminum alloy: experimental investigation of process parameters and mechanical designs

Author:

Idriss MohamadORCID,Mirakhorli Fatemeh,Desrochers Alain,Maslouhi Ahmed

Abstract

AbstractIn this study, the laser welding process is used to join 1.6-mm-thick AA5052-H36 sheets in an overlap joint configuration. Both pulse and oscillation laser beam welding were investigated for the first laser pass. Oscillation beam laser welding in continuous-wave mode show more stable and sound weld with no porosity defects compare to pulse wave (PW) mode. The adopted welding power, speed, frequency, and defocus are 8 kW, 6.5 m/min, 150 Hz, and + 8 mm, respectively. The obtained stitch welds are defects free (blowholes, micro-cracks, or porosities). A circular oscillation ramp-up/ramp-down PW mode is adopted for a second laser surface re-melting (LSR) pass. The corresponding welding power, speed, frequency, and defocus are 5 kW, 2.5 m/min, 500 Hz, and + 15 mm, respectively. Shear tests are then performed to evaluate the mechanical properties of single lap joints (SLJ) for different stitch weld shapes, 2 gap tolerances (0 and 0.5 mm), as well as with/without LSR pass. The best tests’ reproducibility and highest dissipated energies (~ + 42% when compared to the perpendicular direction) are obtained when the stitch weld direction corresponds to the loading direction. The second LSR pass provides more aesthetic joints with higher shear resistance (~ + 1% to + 3%) due to a decrease in the weld surface underfill and undercut imperfections of the stitch weld. The part-to-part gap leads to higher shear resistance (~ + 20%) owing to 2 main reasons: larger welding surfaces at the joint interface and higher hardness of the fusion zone. These findings are of great value for including laser welding technology in the automotive and surface transportation industries. Graphic abstract

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3