Experimental investigation and optimization of the effects of manufacturing parameters on geometric tolerances in additive manufacturing of AlSi10Mg alloy

Author:

Siyambaş YusufORCID,Turgut YakupORCID

Abstract

AbstractWhile the quality of parts produced by additive manufacturing is generally evaluated by surface roughness, relative density, and mechanical properties, the issue of dimensional accuracy is not examined sufficiently. However, dimensional accuracy is very important for the final use and finishing of a product. Since the dimensional change mainly occurs due to shrinkage resulting from the heat energy applied during the sintering process, the effect of production parameters in the additive manufacturing method is quite large. To minimize shrinkage and increase dimensional accuracy, manufacturing parameters need to be optimized and meticulously examined. This study was aimed at determining the effects of manufacturing parameters on geometric tolerances in the production of parts using the additive manufacturing method. AlSi10Mg powder alloy and selective laser melting (SLM) technology were used in the additive manufacturing of this alloy in part production. Twelve different laser powers and scanning speeds, as well as fixed scanning range and layer thickness parameters, were used in production. In determining geometric tolerances, features such as hole diameter change, deviation from angularity, deviation from perpendicularity, deviation from flatness, and deviation from parallelism were taken into consideration. As a result of the study, deviation values increased in high and low laser power/scanning speed combinations. Minimum deviation amounts were obtained in the range of 250–310 laser power and 785–974 scanning speed, which are the middle values of the parameters used. The optimum values of different output responses have been obtained with different production parameters, but for the final use and quality control approval of the product, it is necessary to determine the input parameters at which all output responses are optimal. In this process, the gray relational analysis optimization method, which is one of the multi-criteria decision-making methods, was preferred. As a result of the optimization, the optimum manufacturing parameters for geometric tolerances were determined as the 290/911 laser power/scanning speed combination.

Funder

Gazi Üniversitesi

Erzincan Binali Yildirim University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3