Tolerance analysis for robotic pick-and-place operations

Author:

Tipary BenceORCID,Erdős GáborORCID

Abstract

AbstractRobotic workcell design is a complex process, especially in case of flexible (e.g., bin-picking) workcells. The numerous requirements and the need for continuous system validation on multiple levels place a huge burden on the designers. There are a number of tools for analyzing the different aspects of robotic workcells, such as CAD software, system modelers, or grasp and path planners. However, the precision aspect of the robotic operation is often overlooked and tackled only as a matter of manipulator repeatability. This paper proposes a designer tool to assess the precision feasibility of robotic pick-and-place workcells from the operation point of view. This means that not only the manufacturing tolerances of the workpiece and the placing environment are considered, but the tolerance characteristics of the manipulation and metrology process (in case of flexible applications) as well. Correspondingly, the contribution of the paper is a novel tolerance modeling approach, where the tolerance stack-up is set up as a transformation chain of low-order kinematic pairs between the workpiece, manipulator, and other workcell components, based on manipulation, seizing, releasing, manufacturing, and metrology tolerances. Using this representation, the fulfillment of functional requirements (e.g., picking or placing precision) can be validated based on the tolerance range of corresponding chain members. By having a generalized underlying model, the proposed method covers generic industrial pick-and-place applications, including both conventional and flexible ones. The application of the method is presented in a semi-structured pick-and-place scenario.

Funder

Nemzeti Kutatási Fejlesztési és Innovációs Hivatal

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3