Graphene nanoplatelets reinforced Al-Cu-Mg composite fabricated using laser powder bed fusion: microstructure, mechanical properties, and wear behaviour

Author:

Pekok Mulla Ahmet,Setchi RossitzaORCID,Ryan Michael,Brousseau Emmanuel,Han Quanquan,Gu Dongdong

Abstract

AbstractAluminium-based metal matrix composites reinforced with graphene (Gr) and its derivatives have been reported as promising composites due to their superior properties such as strength, damage tolerance, fatigue resistance, and density. However, the crack and porosity susceptibility of Aluminium 2024 Alloy (AA2024) with added Gr when fabricated using additive manufacturing techniques is not sufficiently well understood. The present work addresses this knowledge gap by focusing on the effect of graphene nanoplatelets (GNPs) and scanning speed on the AA2024 composites’ wear performance and microstructural and mechanical properties of specimens fabricated using laser powder bed fusion (LPBF). The experimental findings demonstrate that up to 0.5% presence of Gr in the composite improves its crystallite size and microhardness by up to 37.6% and 45%, respectively; however, it increases the porosity and crack formation due to the high laser power requirement. Moreover, the composites’ macroscale scratch and nanoscale wear performances showed improvements by up to 50% and 56% with higher Gr concentration (0.5%), suggesting that Gr is distributed uniformly in the structure. The improved understanding of the relationship between microstructure and mechanical characteristics of the GNPs/Al2024 composites fabricated using LPBF in terms of cracking and porosity formation is another significant contribution of this work. Graphical abstract

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3