Can we generate shellcodes via natural language? An empirical study

Author:

Liguori PietroORCID,Al-Hossami Erfan,Cotroneo Domenico,Natella Roberto,Cukic Bojan,Shaikh Samira

Abstract

AbstractWriting software exploits is an important practice for offensive security analysts to investigate and prevent attacks. In particular, shellcodes are especially time-consuming and a technical challenge, as they are written in assembly language. In this work, we address the task of automatically generating shellcodes, starting purely from descriptions in natural language, by proposing an approach based on Neural Machine Translation (NMT). We then present an empirical study using a novel dataset (Shellcode_IA32), which consists of 3200 assembly code snippets of real Linux/x86 shellcodes from public databases, annotated using natural language. Moreover, we propose novel metrics to evaluate the accuracy of NMT at generating shellcodes. The empirical analysis shows that NMT can generate assembly code snippets from the natural language with high accuracy and that in many cases can generate entire shellcodes with no errors.

Publisher

Springer Science and Business Media LLC

Subject

Software

Reference93 articles.

1. Alhuzali, A., Eshete, B., Gjomemo, R., Venkatakrishnan, V.: Chainsaw: Chained automated workflow-based exploit generation. In: ACM Conf. on Computer and Communications Security, pp. 641–652 (2016)

2. Alon, U., Brody, S., Levy, O., Yahav, E.: code2seq: Generating sequences from structured representations of code. In: Intl. Conf. on Learning Representations (2018)

3. Anley, C., Heasman, J., Lindner, F., Richarte, G.: The Shellcoder’s Handbook: Discovering and Exploiting Security Holes. Wiley (2007). https://books.google.it/books?id=8PLYwAEACAAJ

4. Arce, I.: The shellcode generation. IEEE Security & Privacy 2(5), 72–76 (2004)

5. Avgerinos, T., Cha, S.K., Hao, B.L.T., Brumley, D.: Aeg: Automatic exploit generation. In: NDSS (2011)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3