Author:
Freire Willian Marques,Rosa Cláudia Tupan,Amaral Aline Maria Malachini Miotto,Colanzi Thelma Elita
Publisher
Springer Science and Business Media LLC
Reference59 articles.
1. Alizadeh, V., Kessentini, M. (2018). Reducing interactive refactoring effort via clustering-based multi-objective search. In: 2018 33rd IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 464–474 https://doi.org/10.1145/3238147.3238217
2. Alpaydin, E.: Introduction to Machine Learning. MIT Press, Cambridge (2010)
3. Araújo, A.A., Paixão, M.: Machine learning for user modeling in an interactive genetic algorithm for the next release problem. In: International Symposium on Search Based Software Engineering (SSBSE), pp. 228–233 (2014). https://doi.org/10.1007/978-3-319-09940-8_17
4. Araújo, A.A., Paixao, M., Yeltsin, I., Dantas, A., Souza, J.: An architecture based on interactive optimization and machine learning applied to the next release problem. Autom. Softw. Eng. (ASE) 24, 623–671 (2017). https://doi.org/10.1007/s10515-016-0200-3
5. Arthur, D., Vassilvitskii, S. (2007). K-means++: the advantages of careful seeding. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1027–1035