Probabilistic maximization of time-dependent capacities in a gas network

Author:

Heitsch Holger,Henrion René,Tischendorf Caren

Abstract

AbstractThe determination of free technical capacities belongs to the core tasks of a gas network owner. Since gas loads are uncertain by nature, it makes sense to understand this as a probabilistic problem provided that stochastic modeling of available historical data is possible. Future clients, however, do not have a history or they do not behave in a random way, as is the case, for instance, in gas reservoir management. Therefore, capacity maximization becomes an optimization problem with uncertainty-related constraints which are partially of probabilistic and partially of robust (worst case) type. While previous attempts to solve this problem were devoted to models with static (time-independent) gas flow, we aim at considering here transient gas flow subordinate to the isothermal Euler equations. The basic challenge addressed in the manuscript is two-fold: first, a proper way of formulating probabilistic constraints in terms of the differential equations has to be provided. This will be realized on the basis of the so-called spherical-radial decomposition of Gaussian random vectors. Second, a suitable characterization of the worst-case load behaviour of future customers has to be found. It will be shown, that this is possible for quasi-static flow and can be transferred to the transient case. The complexity of the problem forces us to constrain ourselves in this first analysis to simple pipes or to a V-like structure of the network. Numerical solutions are presented and show that the differences between quasi-static and transient solutions are small, at least in these elementary examples.

Funder

Deutsche Forschungsgemeinschaft

Fondation Mathematique Jacques Hadamard

Weierstraß-Institut für Angewandte Analysis und Stochastik, Leibniz-Institut im Forschungsverbund Berlin e.V.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3