Surrogate assisted interactive multiobjective optimization in energy system design of buildings

Author:

Aghaei Pour Pouya,Rodemann Tobias,Hakanen Jussi,Miettinen Kaisa

Abstract

AbstractIn this paper, we develop a novel evolutionary interactive method called interactive K-RVEA, which is suitable for computationally expensive problems. We use surrogate models to replace the original expensive objective functions to reduce the computation time. Typically, in interactive methods, a decision maker provides some preferences iteratively and the optimization algorithm narrows the search according to those preferences. However, working with surrogate models will introduce some inaccuracy to the preferences, and therefore, it would be desirable that the decision maker can work with the solutions that are evaluated with the original objective functions. Therefore, we propose a novel model management strategy to incorporate the decision maker’s preferences to select some of the solutions for both updating the surrogate models (to improve their accuracy) and to show them to the decision maker. Moreover, we solve a simulation-based computationally expensive optimization problem by finding an optimal configuration for an energy system of a heterogeneous business building complex. We demonstrate how a decision maker can interact with the method and how the most preferred solution is chosen. Finally, we compare our method with another interactive method, which does not have any model management strategy, and shows how our model management strategy can help the algorithm to follow the decision maker’s preferences.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Control and Optimization,Mechanical Engineering,Aerospace Engineering,Civil and Structural Engineering,Software

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3