1. M. Bertram, Multiresolution Modeling for Scientific Visualization,Ph.D. Thesis, University of California at Davis, July 2000. http://daddi.informatik.unikl.de/ Bertram/
2. M. Bertram, M.A. Duchaineau, B. Hamann. and K.I. Joy, Generalizing lifted tensor-product wavelets to irregular polygonal domains, Data Visualization: The State of The Art, Kluver Academic Publishers, 2003, pp. 289–300.
3. R. Calderbank, I. Daubechies, W. Sweldens, and B.-L. Yeo, Wavelet transforms that map integers to integers, Applied and Computational Harmonic Analysis, Vol. 5, No. 3, Academic Press, July 1998, pp. 332–369.
4. A.S. Cavaretta, C.A. Micchelli, and W. Dahmen, Stationary Subdivision, American Mathematical Society, Boston, MA, 1991.
5. P. Christensen, E. Stollnitz, D. Salesin, T. DeRose, Wavelet radiance,Proceedings of the Fifth Eurographics Workshop on Photorealistic Rendering Techniques, Springer-Verlag, Berlin, Germany, 1995, pp. 295–309 and 432.