Challenges for the estimation of uncertainty of measurements made in situ

Author:

Ramsey Michael H.ORCID

Abstract

AbstractIn situ measurements are made without the removal of a physical sample and have many advantages over traditional ex situ measurements, made on a removed sample usually in a remote laboratory. The quality of ex situ measurements is usually expressed primarily in terms of their measurement uncertainty, including that arising during the sampling process. However, estimates of uncertainty for in situ measurement values have not usually included this uncertainty from sampling (UfS). It is argued that the making of an in situ measurement inevitably includes the taking of an ‘undisturbed sample’ that generates UfS, which should be included in the estimate of measurement uncertainty. Because undisturbed samples are not prepared or mixed, as is usual for removed samples, the heterogeneity of the analyte concentration in the sampling target is the primary source of UfS. Existing methods for estimating UfS for ex situ measurements can broadly be applied to in situ measurements. However, four extra challenges that limit the design and uptake of uncertainty estimation for in situ methods are identified, and possible solutions and actions required are discussed. Examples of in situ measurements considered include Pb in top soil by hand-held PXRF, 137Cs at a nuclear site by portable gamma-ray spectrometry, and bilirubin in new-born infants by hand-held reflectance photometry.

Funder

University of Sussex

Publisher

Springer Science and Business Media LLC

Subject

Safety, Risk, Reliability and Quality,Instrumentation,General Chemical Engineering,General Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3