Laser Powder Bed Fusion Printing of CoCrFeMnNi High Entropy Alloy: Processing, Microstructure, and Mechanical Properties

Author:

Atabay Sila Ece,Sarafan Sheida,Islam AminulORCID,Bernier Fabrice,Gholipour Javad,Amos Robert,Patnaik Prakash,Wanjara Priti,Brochu Mathieu

Abstract

AbstractEquiatomic CoCrFeMnNi high entropy alloy (HEA) powder was processed by laser powder bed fusion (LPBF) additive manufacturing (AM). The properties of the spherical pre-alloyed CoCrFeMnNi powder were characterized and its processability using LPBF AM was systematically investigated through the volumetric energy density (VED) based on the surface roughness, defects (micro-cracks and porosity) and densification. After optimization, LPBF processing at a VED of 104 J/mm3 achieved highly dense and crack-free vertical and horizontal test specimens with a porosity fraction lower than 0.01% and micro-pores having a mean size of, respectively, 25.9 μm and 13.4 μm, as determined from X-ray micro-computed tomography (μCT) inspection. Scanning electron microscope (SEM) analysis of the as-built (AB) CoCrFeMnNi processed at a VED of 104 J/mm3 showed a heterogeneous solidification microstructure, consisting of columnar grains with a cellular subgrain structure, and electron backscattered diffraction (EBSD) revealed a crystallographic texture mainly along the < 100 > direction. Post treatment with hot isostatic pressing (HIP) was effective in closing the remnant micro-pores in the bulk volume of the AB CoCrFeMnNi. Also, the cellular sub-grain structure in the AB CoCrFeMnNi completely disappeared after HIP and the resulting microstructure consisted of recrystallized equiaxed grains with annealing twins. The room temperature tensile response was anisotropic for AB CoCrFeMnNi with horizontally built specimens exhibiting higher strength and fracture strains (global and local) compared to vertically built ones; HIP reduced the anisotropy in the tensile properties and led to similar tensile strength with elongation values that were ~ 50% higher than in the AB condition. The HIPed CoCrFeMnNi also displayed higher Charpy impact toughness and absorbed energy at both room and liquid nitrogen temperatures compared to the AB material. Examination of the fracture surfaces after tensile and Charpy impact testing revealed ductile features with characteristic dimpled appearance and pointed to the important role of the remnant micro-pores on failure in the AB CoCrFeMnNi. Tribological assessments pointed to the superior low-stress abrasion resistance of AB and HIPed CoCrFeMnNi compared to 316L stainless steel (SS), which was included in this study to reinforce the analysis. SEM observations revealed that scratching and micro-fracture are the dominant wear mechanisms for the CoCrFeMnNi HEA, whereas ploughing and cutting parallel to the abrasive flow direction are the dominant mechanisms for 316L SS. To the authors’ knowledge, this study is the first to evaluate and report the low-stress abrasion resistance of any high entropy alloy. To understand the corrosion behavior, polarization curves of AB and HIPed CoCrFeMnNi were measured in 3.5 wt% NaCl and 1N H2SO4 solutions, and the results were compared to those of 316L SS. The findings indicate that AB and HIPed CoCrFeMnNi outperform 316L SS in a chloride-containing environment, but not in an acid-containing environment. Additionally, observations of hydrogen permeability revealed that AB CoCrFeMnNi permeates a lower volume of hydrogen atoms (by ~ 5 times) compared to 316L SS, despite its higher (by nearly 3 times) diffusion coefficient. Electrochemical hydrogen permeation data showed that the concentration of atomic hydrogen in the sub-surface of AB and HIPed CoCrFeMnNi was, respectively, about 32 and 26 times lower than in 316L SS. This study provides important material–structure–property data and indicates a promising outlook for LPBF of the CoCrFeMnNi HEA with high-performance.

Funder

National Research Council Canada

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3