FGFR2b signalling restricts lineage-flexible alveolar progenitors during mouse lung development and converges in mature alveolar type 2 cells

Author:

Jones Matthew R.,Lingampally Arun,Ahmadvand Negah,Chong Lei,Wu Jin,Wilhem Jochen,Vazquez-Armendariz Ana Ivonne,Ansari Meshal,Herold Susanne,Ornitz David M.,Schiller Herbert B.,Chao Cho-Ming,Zhang Jin-San,Carraro Gianni,Bellusci SaverioORCID

Abstract

AbstractThe specification, characterization, and fate of alveolar type 1 and type 2 (AT1 and AT2) progenitors during embryonic lung development are poorly defined. Current models of distal epithelial lineage formation fail to capture the heterogeneity and dynamic contribution of progenitor pools present during early development. Furthermore, few studies explore the pathways involved in alveolar progenitor specification and fate. In this paper, we build upon our previously published work on the regulation of airway epithelial progenitors by fibroblast growth factor receptor 2b (FGFR2b) signalling during early (E12.5) and mid (E14.5) pseudoglandular stage lung development. Our results suggest that a significant proportion of AT2 and AT1 progenitors are lineage-flexible during late pseudoglandular stage development, and that lineage commitment is regulated in part by FGFR2b signalling. We have characterized a set of direct FGFR2b targets at E16.5 which are likely involved in alveolar lineage formation. These signature genes converge on a subpopulation of AT2 cells later in development and are downregulated in AT2 cells transitioning to the AT1 lineage during repair after injury in adults. Our findings highlight the extensive heterogeneity of pneumocytes by elucidating the role of FGFR2b signalling in these cells during early airway epithelial lineage formation, as well as during repair after injury.

Funder

Deutsche Forschungsgemeinschaft

Justus-Liebig-Universität Gießen

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Cellular and Molecular Neuroscience,Pharmacology,Molecular Biology,Molecular Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3