Proteomic investigation of neural stem cell to oligodendrocyte precursor cell differentiation reveals phosphorylation-dependent Dclk1 processing
-
Published:2023-08-18
Issue:9
Volume:80
Page:
-
ISSN:1420-682X
-
Container-title:Cellular and Molecular Life Sciences
-
language:en
-
Short-container-title:Cell. Mol. Life Sci.
Author:
Hardt RobertORCID, Dehghani AlirezaORCID, Schoor Carmen, Gödderz MarkusORCID, Cengiz Winter NurORCID, Ahmadi Shiva, Sharma Ramesh, Schork KarinORCID, Eisenacher MartinORCID, Gieselmann VolkmarORCID, Winter DominicORCID
Abstract
AbstractOligodendrocytes are generated via a two-step mechanism from pluripotent neural stem cells (NSCs): after differentiation of NSCs to oligodendrocyte precursor/NG2 cells (OPCs), they further develop into mature oligodendrocytes. The first step of this differentiation process is only incompletely understood. In this study, we utilized the neurosphere assay to investigate NSC to OPC differentiation in a time course-dependent manner by mass spectrometry-based (phospho-) proteomics. We identify doublecortin-like kinase 1 (Dclk1) as one of the most prominently regulated proteins in both datasets, and show that it undergoes a gradual transition between its short/long isoform during NSC to OPC differentiation. This is regulated by phosphorylation of its SP-rich region, resulting in inhibition of proteolytic Dclk1 long cleavage, and therefore Dclk1 short generation. Through interactome analyses of different Dclk1 isoforms by proximity biotinylation, we characterize their individual putative interaction partners and substrates. All data are available via ProteomeXchange with identifier PXD040652.
Funder
Deutsche Forschungsgemeinschaft Deutscher Akademischer Austauschdienst Medizinische Fakultät, Rheinische Friedrich-Wilhelms-Universität Bonn Bundesministerium für Bildung und Forschung CUBiMed.RUB Rheinische Friedrich-Wilhelms-Universität Bonn
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Cellular and Molecular Neuroscience,Pharmacology,Molecular Biology,Molecular Medicine
Reference103 articles.
1. Azevedo FAC, Carvalho LRB, Grinberg LT, Farfel JM, Ferretti REL, Leite REP, Jacob Filho W, Lent R, Herculano-Houzel S (2009) Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol 513(5):532–541. https://doi.org/10.1002/cne.21974 2. Callaway EM, Dong HW, Ecker JR, Hawrylycz MJ, Huang ZJ, Lein ES, Ngai J, Osten P, Ren B, Tolias AS, White O, Zeng HK, Zhuang XW, Ascoli GA, Behrens MM, Chun J, Feng GP, Gee JC, Ghosh SS, Halchenko YO, Hertzano R, Lim BK, Martone ME, Ng L, Pachter L, Ropelewski AJ, Tickle TL, Yang XW, Zhang K, Bakken TE, Berens P, Daigle TL, Harris JA, Jorstad NL, Kalmbach BE, Kobak D, Li YE, Liu HQ, Matho KS, Mukamel EA, Naeemi M, Scala F, Tan PC, Ting JT, Xie FM, Zhang M, Zhang ZZ, Zhou JT, Zingg B, Bertagnolli D, Casper T, Crichton K, Dee N, Diep D, Ding SL, Dong WX, Dougherty EL, Fong O, Goldman M, Goldy J, Hodge RD, Hu LJ, Keene CD, Krienen FM, Kroll M, Lake BB, Lathia K, Linnarsson S, Liu CS, Macosko EZ, McCarroll SA, McMillen D, Nadaf NM, Nguyen TN, Palmer CR, Pham T, Plongthongkum N, Reed NM, Regev A, Rimorin C, Romanow WJ, Savoia S, Siletti K, Smith K, Sulc J, Tasic B, Tieu M, Torkelson A, Tung H, van Velthoven CTJ, Vanderburg CR, Yanny AM, Fang RX, Hou XM, Lucero JD, Osteen JK, Pinto-Duarte A, Poirion O, Preissl S, Wang XX, Aldridge AI, Bartlett A, Boggeman L, O’Connor C, Castanon RG, Chen HM, Fitzpatrick C, Luo CY, Nery JR, Nunn M, Rivkin AC, Tian W, Dominguez B, Ito-Cole T, Jacobs M, Jin X, Lee CT, Lee KF, Miyazaki PA, Pang Y, Rashid M, Smith JB, Vu M, Williams E, Armand E, Biancalani T, Booeshaghi AS, Crow M, Dudoit S, Fischer S, Gillis J, Hu QW, Kharchenko PV, Niu SY, Ntranos V, Purdom E, Risso D, de Bezieux HR, Somasundaram S, Street K, Svensson V, Vaishnav ED, Van den Berge K, Welch JD, Yao ZZ, An X, Bateup HS, Bowman I, Chance RK, Foster NN, Galbavy W, Gong H, Gou L, Hatfield JT, Hintiryan H, Hirokawa KE, Kim G, Kramer DJ, Li AA, Li XN, Luo QM, Munoz-Castaneda R, Stafford DA, Feng Z, Jia XY, Jiang SD, Jiang T, Kuang XL, Larsen R, Lesnar P, Li YY, Li YY, Liu LJ, Peng HC, Qu L, Ren M, Ruan ZC, Shen E, Song YY, Wakeman W, Wang P, Wang YM, Wang Y, Yin LL, Yuan J, Zhao SJ, Zhao X, Narasimhan A, Palaniswamy R, Banerjee S, Ding LY, Huilgol D, Huo BX, Kuo HC, Laturnus S, Li X, Mitra PP, Mizrachi J, Wang QX, Xie P, Xiong F, Yu Y, Eichhorn SW, Berg J, Bernabucci M, Bernaerts Y, Cadwell CR, Castro JR, Dalley R, Hartmanis L, Horwitz GD, Jiang XL, Ko AL, Miranda E, Mulherkar S, Nicovich PR, Owen SF, Sandberg R, Sorensen SA, Tan ZH, Allen S, Hockemeyer D, Lee AY, Veldman MB, Adkins RS, Ament SA, Bravo HC, Carter R, Chatterjee A, Colantuoni C, Crabtree J, Creasy H, Felix V, Giglio M, Herb BR, Kancherla J, Mahurkar A, McCracken C, Nickel L, Olley D, Orvis J, Schor M, Hood G, Dichter B, Grauer M, Helba B, Bandrowski A, Barkas N, Carlin B, D’Orazi FD, Degatano K, Gillespie TH, Khajouei F, Konwar K, Thompson C, Kelly K, Mok S, Sunkin S, Netwo BICC (2021) A multimodal cell census and atlas of the mammalian primary motor cortex. Nature 598(7879):86–102. https://doi.org/10.1038/s41586-021-03950-0 3. Allen NJ, Lyons DA (2018) Glia as architects of central nervous system formation and function. Science 362(6411):181–185. https://doi.org/10.1126/science.aat0473 4. Schoor C, Brocke-Ahmadinejad N, Gieselmann V, Winter D (2019) Investigation of oligodendrocyte precursor cell differentiation by quantitative proteomics. Proteomics 19(14):11. https://doi.org/10.1002/pmic.201900057 5. Dimou L, Simon C, Kirchhoff F, Takebayashi H, Götz M (2008) Progeny of Olig2-expressing progenitors in the gray and white matter of the adult mouse cerebral cortex. J Neurosci 28(41):10434–10442. https://doi.org/10.1523/jneurosci.2831-08.2008
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|