Abstract
AbstractConservation translocations can restore populations and prevent extinction of threatened species. Sourcing adequate genetic diversity is an essential consideration when planning reintroductions, because it influences individual fitness and long-term persistence of populations, yet available populations of threatened species may lack diversity. We estimated population genetic parameters for one of Australia’s most threatened mammals, the northern bettong, Bettongia tropica, to select source populations for reintroduction. Individuals from sites across the species’ extant range in the Wet Tropics of north Queensland were genotyped, using 6,133 informative SNPs. We found that samples clustered into four populations: an isolated northern population at Mt Spurgeon and three connected southern populations in the Lamb Range. Most of the species’ genetic diversity was dispersed across the Lamb Range populations in approximately equal proportions. Populations showed an isolation-by-distance effect, even over short distances within continuous habitat. Admixture of populations was high at distances < 7 km but low at distances > 11 km, and there was asymmetrical gene flow between the two closest neighboring populations. All populations had small effective sizes and experienced drift, but connectivity appears to have mitigated drift and stabilized population sizes within the Lamb Range. The Mt Spurgeon population had a very small effective population size and low genetic diversity. We use our findings to weigh up the risks and benefits of mixing sources for reintroduction, and we recommend a mixed source approach. We do not currently recommend sourcing individuals from Mt Spurgeon and conservation efforts to preserve this population are urgently required.
Publisher
Springer Science and Business Media LLC
Subject
Genetics,Ecology, Evolution, Behavior and Systematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献