A novel anatomo-physiologic high-grade spondylolisthesis model to evaluate L5 nerve stretch injury after spondylolisthesis reduction

Author:

Ishak BasemORCID,Pierre Clifford A.,Ansari Darius,Lachkar Stefan,von Glinski Alexander,Unterberg Andreas W.,Oskouian Rod J.,Chapman Jens R.

Abstract

AbstractL5 nerve palsy is a well-known complication following reduction of high-grade spondylolisthesis. While several mechanisms for its occurrence have been proposed, the hypothesis of L5 nerve root strain or displacement secondary to mechanical reduction remains poorly studied. The aim of this cadaveric study is to determine changes in morphologic parameters of the L5 nerve root during simulated intraoperative reduction of high-grade spondylolisthesis. A standard posterior approach to the lumbosacral junction was performed in eight fresh-frozen cadavers with lumbosacral or lumbopelvic screw fixation. Wide decompressions of the spinal canal and L5 nerve roots with complete facetectomies were accomplished with full exposure of the L5 nerve roots. A 100% translational slip was provoked by release of the iliolumbar ligaments and cutting the disc with the attached anterior longitudinal ligament. To evaluate the path of the L5 nerves during reduction maneuvers, metal bars were inserted bilaterally at the inferomedial aspects of the L5 pedicle at a distance of 10 mm from the midpoint of the L5 pedicle screws. There was no measurable change in length of the L5 nerve roots after 50% and 100% reduction of spondylolisthesis. Mechanical strain or displacement during reduction is an unlikely cause of L5 nerve root injury. Further anatomical or physiological studies are necessary to explore alternative mechanisms of L5 nerve palsy in the setting of high-grade spondylolisthesis correction, and surgeons should favor extensive surgical decompression of the L5 nerve roots when feasible.

Funder

Ruprecht-Karls-Universität Heidelberg

Publisher

Springer Science and Business Media LLC

Subject

Neurology (clinical),General Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3