Are sesquiterpene lactones the elusive KARRIKIN-INSENSITIVE2 ligand?

Author:

Rahimi Mehran,Bouwmeester HarroORCID

Abstract

AbstractMain conclusionThe sunflower sesquiterpene lactones 8-epixanthatin and tomentosin can bind to the hydrophobic pocket of sunflower KAI2 with an affinity much higher than for the exogenous ligand KAR.AbstractSesquiterpene lactones (STLs) are secondary plant metabolites with a wide range of biological, such as anti-microbial, activities. Intriguingly, the STLs have also been implicated in plant development: in several Asteraceae, STL levels correlate with the photo-inhibition of hypocotyl elongation. Although this effect was suggested to be due to auxin transport inhibition, there is no structural–functional evidence for this claim. Intriguingly, the light-induced inhibition of hypocotyl elongation in Arabidopsis has been ascribed to HYPOSENSITIVE TO LIGHT/KARRIKIN-INSENSITIVE2 (HTL/KAI2) signaling. KAI2 was discovered because of its affinity to the smoke-derived karrikin (KAR), though it is generally assumed that KAI2 has another, endogenous but so far elusive, ligand rather than the exogenous KARs. Here, we postulate that the effect of STLs on hypocotyl elongation is mediated through KAI2 signaling. To support this hypothesis, we have generated homology models of the sunflower KAI2s (HaKAI2s) and used them for molecular docking studies with STLs. Our results show that particularly two sunflower STLs, 8-epixanthatin and tomentosin, can bind to the hydrophobic pockets of HaKAI2s with high affinity. Our results are in line with a recent study, showing that these two STLs accumulate in the light-exposed hypocotyls of sunflower. This finding sheds light on the effect of STLs in hypocotyl elongation that has been reported for many decades but without conclusive insight in the elusive mechanism underlying this effect.

Funder

ERC Advanced grant CHEMCOMRHIZO

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3