Recent advances and challenges in potato improvement using CRISPR/Cas genome editing

Author:

Chincinska Izabela AnnaORCID,Miklaszewska Magdalena,Sołtys-Kalina Dorota

Abstract

Abstract Main conclusion Genome editing using CRISPR/Cas technology improves the quality of potato as a food crop and enables its use as both a model plant in fundamental research and as a potential biofactory for producing valuable compounds for industrial applications. Abstract Potato (Solanum tuberosum L.) plays a significant role in ensuring global food and nutritional security. Tuber yield is negatively affected by biotic and abiotic stresses, and enzymatic browning and cold-induced sweetening significantly contribute to post-harvest quality losses. With the dual challenges of a growing population and a changing climate, potato enhancement is essential for its sustainable production. However, due to several characteristics of potato, including high levels of heterozygosity, tetrasomic inheritance, inbreeding depression, and self-incompatibility of diploid potato, conventional breeding practices are insufficient to achieve substantial trait improvement in tetraploid potato cultivars within a relatively short time. CRISPR/Cas-mediated genome editing has opened new possibilities to develop novel potato varieties with high commercialization potential. In this review, we summarize recent developments in optimizing CRISPR/Cas-based methods for potato genome editing, focusing on approaches addressing the challenging biology of this species. We also discuss the feasibility of obtaining transgene-free genome-edited potato varieties and explore different strategies to improve potato stress resistance, nutritional value, starch composition, and storage and processing characteristics. Altogether, this review provides insight into recent advances, possible bottlenecks, and future research directions in potato genome editing using CRISPR/Cas technology.

Funder

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3