Extremal lifetimes of persistent cycles

Author:

Chenavier Nicolas,Hirsch Christian

Abstract

AbstractPersistent homology captures the appearances and disappearances of topological features such as loops and cavities when growing disks centered at a Poisson point process. We study extreme values for the lifetimes of features dying in bounded components and with birth resp. death time bounded away from the threshold for continuum percolation and the coexistence region. First, we describe the scaling of the minimal lifetimes for general feature dimensions, and of the maximal lifetimes for cavities in the Čech filtration. Then, we proceed to a more refined analysis and establish Poisson approximation for large lifetimes of cavities and for small lifetimes of loops. Finally, we also study the scaling of minimal lifetimes in the Vietoris-Rips setting and point to a surprising difference to the Čech filtration.

Publisher

Springer Science and Business Media LLC

Subject

Economics, Econometrics and Finance (miscellaneous),Engineering (miscellaneous),Statistics and Probability

Reference25 articles.

1. Arratia, R., Goldstein, L., Gordon, L.: Poisson approximation and the Chen-Stein method. Statist. Sci. 5(4), 403–434 (1990)

2. Biscio, C.A.N., Chenavier, N., Hirsch, C., Svane, A.M.: Testing goodness of fit for point processes via topological data analysis. Electron. J. Stat. 14(1), 1024–1074 (2020)

3. Björner, A.: Topological methods. In: Handbook of Combinatorics, pp. 1819–1872. Elsevier, Amsterdam (1995)

4. Bobrowski, O.: Homological connectivity in random Čech complexes. arXiv preprint arXiv:1906.04861 (2019)

5. Bobrowski, O., Kahle, M., Skraba, P.: Maximally persistent cycles in random geometric complexes. Ann. Appl. Probab. 27(4), 2032–2060 (2017)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mixed Hodge Structures on Alexander Modules;Memoirs of the American Mathematical Society;2024-04

2. Eigenspace Decomposition of Mixed Hodge Structures on Alexander Modules;International Mathematics Research Notices;2022-09-10

3. Characterizing emerging features in cell dynamics using topological data analysis methods;Mathematical Biosciences and Engineering;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3