Tail-dependence, exceedance sets, and metric embeddings

Author:

Janßen Anja,Neblung Sebastian,Stoev Stilian

Abstract

AbstractThere are many ways of measuring and modeling tail-dependence in random vectors: from the general framework of multivariate regular variation and the flexible class of max-stable vectors down to simple and concise summary measures like the matrix of bivariate tail-dependence coefficients. This paper starts by providing a review of existing results from a unifying perspective, which highlights connections between extreme value theory and the theory of cuts and metrics. Our approach leads to some new findings in both areas with some applications to current topics in risk management.We begin by using the framework of multivariate regular variation to show that extremal coefficients, or equivalently, the higher-order tail-dependence coefficients of a random vector can simply be understood in terms of random exceedance sets, which allows us to extend the notion of Bernoulli compatibility. In the special but important case of bivariate tail-dependence, we establish a correspondence between tail-dependence matrices and $$L^1$$ L 1 - and $$\ell _1$$ 1 -embeddable finite metric spaces via the spectral distance, which is a metric on the space of jointly 1-Fréchet random variables. Namely, the coefficients of the cut-decomposition of the spectral distance and of the Tawn-Molchanov max-stable model realizing the corresponding bivariate extremal dependence coincide. We show that line metrics are rigid and if the spectral distance corresponds to a line metric, the higher order tail-dependence is determined by the bivariate tail-dependence matrix.Finally, the correspondence between $$\ell _1$$ 1 -embeddable metric spaces and tail-dependence matrices allows us to revisit the realizability problem, i.e. checking whether a given matrix is a valid tail-dependence matrix. We confirm a conjecture of Shyamalkumar and Tao (2020) that this problem is NP-complete.

Funder

National Science Foundation

Otto-von-Guericke-Universität Magdeburg

Publisher

Springer Science and Business Media LLC

Subject

Economics, Econometrics and Finance (miscellaneous),Engineering (miscellaneous),Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Shift-invariant homogeneous classes of random fields;Journal of Mathematical Analysis and Applications;2024-11

2. Long memory of max-stable time series as phase transition: asymptotic behaviour of tail dependence estimators;Electronic Journal of Statistics;2023-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3