Untargeted metabolomic analysis of metabolites related to body dysmorphic disorder (BDD)

Author:

Wang Yawen,Huang Jinlong

Abstract

AbstractBody dysmorphic disorder (BDD) is a disorder associated with depression and eating disorders. It often arises from minor defects in appearance or an individual imagining that he or she is defective. However, the mechanisms causing BDD remain unclear, and its pathogenesis and adjuvant treatment methods still need to be explored. Here, we employed a liquid chromatography-mass spectrometry (LC–MS)-based metabolomics approach to identify key metabolic differences in BDD versus healthy patients. We obtained plasma samples from two independent cohorts (including eight BDD patients and eight healthy control patients). Raw data were analyzed using Compound Discoverer to determine peak alignment, retention time correction, and extraction of peak areas. Metabolite structure identification was also obtained using Compound Discoverer by of accurate mass matching (< 10 ppm) and secondary spectral matching queries of compound databases. Next, multidimensional statistical analyses were performed using the ropls R package. These analyses included: unsupervised principal component analysis, supervised partial Least-Squares Discriminant Analysis, and orthogonal partial Least-Squares Discriminant Analysis. We then identified the most promising metabolic signatures associated with BDD across all metabolomic datasets. Principal component analysis showed changes in small-molecule metabolites in patients, and we also found significant differences in metabolite abundance between the BDD and normal groups. Our findings suggest that the occurrence of BDD may be related to metabolites participating in the following KEGG pathways: ABC transporters, purine metabolism, glycine, serine and threonine metabolism, pyrimidine, pyrimidine metabolism, biosynthesis of 12-, 14-, and 16-membered macrolides, microbial metabolism in diverse environments, biosynthesis of secondary metabolites, and caffeine and insect hormone biosynthesis.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3