Dual-mixed hp-version axisymmetric shell finite element using NURBS mid-surface interpolation

Author:

Tóth Balázs,Burmeister Dániel

Abstract

AbstractA new, general hp-version axisymmetric finite element is derived for the boundary value problems of thin linearly elastic shells of revolution, applying a complementary strain energy-based three-field dual-mixed variational principle. For the interpolation of the mid-surface geometry, non-uniform rational B-splines—NURBS—is used. The independent field variables of the weak formulation are the a priori non-symmetric stress tensor, the displacement vector, and the infinitesimal skew-symmetric rotation tensor. The theoretical model of the shell formulation is based on a consistent dimensional reduction process and a systematic variable-number reduction procedure. The inverse of the unvaried three-dimensional constitutive equation is employed since neither the classical kinematical assumptions nor the stress hypotheses are built in the mathematical model; namely, both the through-the-thickness variation and the normal stress to the shell mid-surface are not excluded. The new hp axisymmetric shell finite element is tested by a representative model problem for extremely thin and moderately thick, singly and doubly curved shells of negative and positive Gaussian curvature. Following from the numerical experiments, the constructed hp-shell finite element gives locking-free results not only for the displacement but also for the stresses.

Funder

European Union, Szechenyi 2020

NKFIH

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Computational Mechanics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3