A thermomechanical finite strain shape memory alloy model and its application to bistable actuators

Author:

Sielenkämper MarianORCID,Wulfinghoff Stephan

Abstract

AbstractThis work presents a thermomechanical finite strain shape memory alloy model that utilizes a projection method to deal with the incompressibility constraint on inelastic strains. Due to its finite strain formulation, it is able to accurately predict the behavior of shape memory alloys with high transformation strains. The key feature of this model is the thermomechanical modeling of the shape memory effect and superelastic behavior by optimizing a global, incremental mixed thermomechanical potential, the variation of which yields the linear momentum balance, the energy balance, the evolution equations of the internal variables as well as boundary conditions of Neumann- and Robin-type. The proposed thermal strain model allows to properly capture transformation induced volume changes, which occur in some shape memory alloys. A finite strain dissipation potential is formulated, which incorporates the disappearance of inelastic strains upon austenite transformation. This important property is consistently transferred to the time-discrete potential using a logarithmic strain formulation. Yield and transformation criteria are derived from the dual dissipation potential. The implementation based on an active set search and the algorithmically consistent linearization are discussed in detail. The model is applied in three-dimensional simulations of a bistable actuator design to explore its capabilities.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3