Predictions of transient vector solution fields with sequential deep operator network

Author:

He JunyanORCID,Kushwaha Shashank,Park Jaewan,Koric Seid,Abueidda Diab,Jasiuk Iwona

Abstract

AbstractThe deep operator network (DeepONet) structure has shown great potential in approximating complex solution operators with low generalization errors. Recently, a sequential DeepONet (S-DeepONet) was proposed to use sequential learning models in the branch of DeepONet to predict final solutions given time-dependent inputs. In the current work, the S-DeepONet architecture is extended by modifying the information combination mechanism between the branch and trunk networks to simultaneously predict vector solutions with multiple components at multiple time steps of the evolution history, which is the first in the literature using DeepONets. Two example problems, one on transient fluid flow and the other on path-dependent plastic loading, were shown to demonstrate the capabilities of the model to handle different physics problems. The use of a trained S-DeepONet model in inverse parameter identification via the genetic algorithm is shown to demonstrate the application of the model. In almost all cases, the trained model achieved an $$R^2$$ R 2 value of above 0.99 and a relative $$L_2$$ L 2 error of less than 10% with only 3200 training data points, indicating superior accuracy. The vector S-DeepONet model, having only 0.4% more parameters than a scalar model, can predict two output components simultaneously at an accuracy similar to the two independently trained scalar models with a 20.8% faster training time. The S-DeepONet inference is at least three orders of magnitude faster than direct numerical simulations, and inverse parameter identifications using the trained model are highly efficient and accurate.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3