Are customer star ratings and sentiments aligned? A deep learning study of the customer service experience in tourism destinations

Author:

Bigne EnriqueORCID,Ruiz Carla,Perez-Cabañero Carmen,Cuenca Antonio

Abstract

AbstractThis study explores the consistency between star ratings and sentiments expressed in online reviews and how they relate to the different components of the customer experience. We combine deep learning applied to natural language processing, machine learning and artificial neural networks to identify how the positive and negative components of 20,954 online reviews posted on TripAdvisor about tourism attractions in Venice impact on their overall polarity and star ratings. Our findings showed that sentiment valence is aligned with star ratings. A cancel-out effect operates between the positive and negative sentiments linked to the service experience dimensions in mixed-neutral reviews.

Funder

Ministerio de Ciencia, Innovación y Universidades

Universitat de Valencia

Publisher

Springer Science and Business Media LLC

Subject

Strategy and Management,Business and International Management

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Enhanced IDBO-CNN-BiLSTM Model for Sentiment Analysis of Natural Disaster Tweets;Biomimetics;2024-09-04

2. Machine learning applied to tourism: A systematic review;WIREs Data Mining and Knowledge Discovery;2024-07-04

3. NLP-Driven Insights on Boutique Hotel Satisfaction;Journal of Computer Information Systems;2024-06-13

4. Sentiment analysis of a nomadic tax social enterprise;Journal of Open Innovation: Technology, Market, and Complexity;2024-03

5. Understanding crowding perceptions and their impact on place experience: Insights from a mixed‐methods study;Psychology & Marketing;2024-01-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3