Charting the Cannabis plant chemical space with computational metabolomics
-
Published:2024-05-25
Issue:3
Volume:20
Page:
-
ISSN:1573-3890
-
Container-title:Metabolomics
-
language:en
-
Short-container-title:Metabolomics
Author:
Myoli AkhonaORCID, Choene MphoORCID, Kappo Abidemi PaulORCID, Madala Ntakadzeni EdwinORCID, van der Hooft Justin J. J.ORCID, Tugizimana FideleORCID
Abstract
Abstract
Introduction
The chemical classification of Cannabis is typically confined to the cannabinoid content, whilst Cannabis encompasses diverse chemical classes that vary in abundance among all its varieties. Hence, neglecting other chemical classes within Cannabis strains results in a restricted and biased comprehension of elements that may contribute to chemical intricacy and the resultant medicinal qualities of the plant.
Objectives
Thus, herein, we report a computational metabolomics study to elucidate the Cannabis metabolic map beyond the cannabinoids.
Methods
Mass spectrometry-based computational tools were used to mine and evaluate the methanolic leaf and flower extracts of two Cannabis cultivars: Amnesia haze (AMNH) and Royal dutch cheese (RDC).
Results
The results revealed the presence of different chemical compound classes including cannabinoids, but extending it to flavonoids and phospholipids at varying distributions across the cultivar plant tissues, where the phenylpropnoid superclass was more abundant in the leaves than in the flowers. Therefore, the two cultivars were differentiated based on the overall chemical content of their plant tissues where AMNH was observed to be more dominant in the flavonoid content while RDC was more dominant in the lipid-like molecules. Additionally, in silico molecular docking studies in combination with biological assay studies indicated the potentially differing anti-cancer properties of the two cultivars resulting from the elucidated chemical profiles.
Conclusion
These findings highlight distinctive chemical profiles beyond cannabinoids in Cannabis strains. This novel mapping of the metabolomic landscape of Cannabis provides actionable insights into plant biochemistry and justifies selecting certain varieties for medicinal use.
Publisher
Springer Science and Business Media LLC
Reference87 articles.
1. Aizpurua-Olaizola, O., Soydaner, U., Öztürk, E., Schibano, D., Simsir, Y., Navarro, P., Etxebarria, N., & Usobiaga, A. (2016). Evolution of the cannabinoid and terpene content during the growth of Cannabis sativa plants from different chemotypes. Journal of Natural Products, 79(2), 324–331. https://doi.org/10.1021/acs.jnatprod.5b00949. 2. Aliferis, K. A., & Bernard-Perron, D. (2020). Cannabinomics: Application of Metabolomics in Cannabis (Cannabis sativa L.) Research and Development. Frontiers in Plant Science, 11(5), 1–20. https://doi.org/10.3389/fpls.2020.00554. 3. Aron, A. T., Gentry, E. C., McPhail, K. L., Nothias, L. F., Nothias-Esposito, M., Bouslimani, A., Petras, D., Gauglitz, J. M., Sikora, N., Vargas, F., van der Hooft, J. J. J., Ernst, M., Kang, K., Bin, Aceves, C. M., Caraballo-Rodríguez, A. M., Koester, I., Weldon, K. C., Bertrand, S., Roullier, C., & Dorrestein, P. C. (2020). Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nature Protocols, 15(6), 1954–1991. https://doi.org/10.1038/s41596-020-0317-5. 4. Balant, M., Gras, A., Ruz, M., Vallès, J., Vitales, D., & Garnatje, T. (2021). Traditional uses of Cannabis: An analysis of the CANNUSE database. Journal of Ethnopharmacology, 279, 1–11. https://doi.org/10.1016/j.jep.2021.114362. 5. Bautista, J. L., Yu, S., & Tian, L. (2021). Flavonoids in Cannabis sativa: Biosynthesis, Bioactivities, and Biotechnology. ACS Omega, 6(8), 5119–5123. https://doi.org/10.1021/acsomega.1c00318.
|
|