Author:
Duan Xingjun,Fang Zhi,Yang Tao,Guo Chunyu,Han Zhongkang,Sarker Debalaya,Hou Xinmei,Wang Enhui
Abstract
AbstractMechanical properties consisting of the bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, etc., are key factors in determining the practical applications of MAX phases. These mechanical properties are mainly dependent on the strength of M-X and M-A bonds. In this study, a novel strategy based on the crystal graph convolution neural network (CGCNN) model has been successfully employed to tune these mechanical properties of Ti3AlC2-based MAX phases via the A-site substitution (Ti3(Al1−xAx)C2). The structure—property correlation between the A-site substitution and mechanical properties of Ti3(Al1−xAx)C2 is established. The results show that the thermodynamic stability of Ti3(Al1−xAx)C2 is enhanced with substitutions A = Ga, Si, Sn, Ge, Te, As, or Sb. The stiffness of Ti3AlC2 increases with the substitution concentration of Si or As increasing, and the higher thermal shock resistance is closely associated with the substitution of Sn or Te. In addition, the plasticity of Ti3AlC2 can be greatly improved when As, Sn, or Ge is used as a substitution. The findings and understandings demonstrated herein can provide universal guidance for the individual synthesis of high-performance MAX phases for various applications.
Publisher
Tsinghua University Press
Subject
Ceramics and Composites,Electronic, Optical and Magnetic Materials
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献