Realizing enhanced energy storage and hardness performances in 0.90NaNbO3−0.10Bi(Zn0.5Sn0.5)O3 ceramics

Author:

Dong Xiaoyan,Li Xu,Chen Hongyun,Dong Qinpeng,Wang Jiaming,Wang Xiang,Pan Yue,Chen Xiuli,Zhou Huanfu

Abstract

AbstractCeramic dielectric capacitors have a broad scope of application in pulsed power supply devices. Relaxor behavior has manifested decent energy storage capabilities in dielectric materials due to its fast polarization response. In addition, an ultrahigh energy storage density can also be achieved in NaNbO3 (NN)-based ceramics by combining antiferroelectric and relaxor characteristics. Most of the existing reports about lead-free dielectric ceramics, nevertheless, still lack the relevant research about domain evolution and relaxor behavior. Therefore, a novel lead-free solid solution, (1−x)NaNbO3xBi(Zn0.5Sn0.5)O3 (abbreviated as xBZS, x = 0.05, 0.10, 0.15, and 0.20) was designed to analyze the domain evolution and relaxor behavior. Domain evolutions in xBZS ceramics confirmed the contribution of the relaxor behavior to their decent energy storage characteristics caused by the fast polarization rotation according to the low energy barrier of polar nanoregions (PNRs). Consequently, a high energy storage density of 3.14 J/cm3 and energy efficiency of 83.30% are simultaneously available with 0.10BZS ceramics, together with stable energy storage properties over a large temperature range (20–100 °C) and a wide frequency range (1–200 Hz). Additionally, for practical applications, the 0.10BZS ceramics display a high discharge energy storage density (Wdis ≈ 1.05 J/cm3), fast discharge rate (t0.9 ≈ 60.60 ns), and high hardness (H ≈ 5.49 GPa). This study offers significant insights on the mechanisms of high performance lead-free ceramic energy storage materials.

Publisher

Tsinghua University Press

Subject

Ceramics and Composites,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3