Ti4+-incorporated fluorite-structured high-entropy oxide (Ce,Hf,Y,Pr,Gd)O2−δ: Optimizing preparation and CMAS corrosion behavior

Author:

Cheng Fuhao,Zhang Fengnian,Liu Yufeng,Guo Meng,Cheng Chufei,Hou Jiadong,Miao Yang,Gao Feng,Wang Xiaomin

Abstract

AbstractEnvironmental barrier coatings (EBCs) with excellent chemical resistance and good high-temperature stability are of great significance for their applications in next-generation turbine engines. In this work, a new type of high-entropy fluorite-structured oxide (Ce0.2Hf0.2Y0.2Pr0.2Gd0.2)O2−δ (HEFO-1) with different Ti4+ contents were successfully synthesized. Minor addition of Ti4+ could be dissolved into a high-entropy lattice to maintain the structure stable, effectively reducing the phase formation temperature and promoting the shrinkage of bulk samples. Heat treatment experiments showed that all the samples remained a single phase after annealing at 1200–1600 °C for 6 h. In addition, high-entropy (Ce0.2Hf0.2Y0.2Pr0.2Gd0.2Ti0.2x)O2−δ demonstrated great resistance to calcium—magnesium—alumina—silicate (CMAS) thermochemical corrosion. When the content of Ti was increased to x = 0.5, the average thickness of the reaction layer was about 10.5 after being corroded at 1300 °C for 10 h. This study reveals that high-entropy (Ce0.2Hf0.2Y0.2Pr0.2Gd0.2Ti0.2x)O2−δ is expected to be a candidate for the next-generation EBC materials with graceful resistance to CMAS corrosion.

Publisher

Tsinghua University Press

Subject

Ceramics and Composites,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3