Tunnel-structured willemite Zn2SiO4: Electronic structure, elastic, and thermal properties

Author:

Dai Ruqiao,Cheng Renfei,Wang Jiemin,Zhang Chao,Li Cuiyu,Wang Hailong,Wang Xiaohui,Zhou Yanchun

Abstract

AbstractWillemite Zn2SiO4 crystallizes in such a way that Zn and Si are tetrahedrally coordinated with O in an ionic-covalent manner to form ZnO4 and SiO4 tetrahedra as the building units. The tetrahedra are corner-sharing, of which one SiO4 tetrahedron connects eight ZnO4 tetrahedra, and one ZnO4 tetrahedron links four ZnO4 tetrahedra and four SiO4 tetrahedra. The unique crystallographic configuration gives rise to parallel tunnels with a diameter of 5.7 Å along the c-axis direction. The tunnel structure of Zn2SiO4 definitely correlates with its interesting elastic and thermal properties. On the one hand, the elastic modulus, coefficient of thermal expansion (CTE), and thermal conductivity are low. Zn2SiO4 has low Vickers hardness of 6.6 GPa at 10 N and low thermal conductivity of 2.34 W/(m·K) at 1073 K. On the other hand, the elastic modulus and CTE along the c-axis are significantly larger than those along the a- and b-axes, showing obvious elastic and thermal expansion anisotropy. Specifically, the Young’s modulus along the z direction (Ez = 179 GPa) is almost twice those in the x and y directions (Ex = Ey = 93 GPa). The high thermal expansion anisotropy is ascribed to the empty tunnels along the c-axis, which are capable of more accommodating the thermal expansion along the a- and b-axes. The striking properties of Zn2SiO4 in elastic modulus, hardness, CTE, and thermal conductivity make it much useful in various fields of ceramics, such as low thermal expansion, thermal insulation, and machining tools.

Publisher

Tsinghua University Press

Subject

Ceramics and Composites,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3