Author:
Madhumitha J.,Arun R.,Singaravelan S.,Selvakumar V.,Balaganesh S.,Gopalsamy P.,Vargheese M.
Publisher
Springer Science and Business Media LLC
Reference15 articles.
1. Kalejahi, B.K., Meshgini, S., Danishvar, S.: Segmentation of brain tumor using a 3D generative adversarial network. Diagnostics 13, 3344 (2023). https://doi.org/10.3390/diagnostics13213344
2. Yapici, M., Karakiş, R., Gürkahraman, K.: Improving brain tumor classification with deep learning using synthetic data. Comput. Mater. Contin. (2023). https://doi.org/10.32604/cmc.2023.035584
3. Akshay Kumaar, M., Samiayya, D., Venkatesan Rajinikanth, P.M., Vincent, D.R., Kadry, S.: Brain tumor classification using a pre-trained auxiliary classifying style-based generative adversarial network. Int. J. Interact. Multimed. Artif. Intell. 8(6), 33–43 (2023)
4. Ahmad, B., Sun, J., You, Q., Palade, V., Mao, Z.: Brain tumor classification using a combination of variational autoencoders and generative adversarial networks. Biomedicines 10, 223 (2022). https://doi.org/10.3390/biomedicines10020223
5. Al-Adwan, A.: Evaluating the effectiveness of brain tumor image generation using generative adversarial network with adam optimizer. Int. J. Adv. Comput. Sci. Appl. (2024). https://doi.org/10.14569/IJACSA.2024.0150653