Synthesis of a novel green biopolymer-based composites beads for removal of methylene blue from aquatic medium: isotherm, thermodynamic and kinetic investigation

Author:

Parlayici ŞerifeORCID,Aras Aslı

Abstract

AbstractThe increase in the world population and the decrease in clean water resources increase people's interest in water purification technologies. Many industries, such as the textile industry, leather industry, cosmetics and food industry, color their products with substances such as dyes and pigments. In this study, a cheap, useful, innovative, environmentally friendly, and sustainable adsorbent was developed for the removal of Methylene Blue (MB), one of the dyes that is harmful to the environment. In fruit tree cultivation, in addition to the product, very high amounts of by-products/waste (branches, bark, leaves, fruit seeds, fruit shells, etc.) are produced. In this direction, walnut tree and olive tree wastes were immobilized with chitosan, made magnetic (m-WCH and m-OCH), and the adsorption of MB on the developed adsorbents was examined in a batch system. Characterization of the synthesized biocomposite adsorbents was performed by FT-IR, SEM, EDX and XRD analyzes. It has been thoroughly described how the pH solution of the MB dye compares to the pHPZC of the adsorbent surface. The pHPZC values for m-WCH and m-OCH were 5.2 and 5.5 respectively. MB adsorption of biocomposites depends on the pH of the environment (3–8), amount of adsorbent (2–10 gL−1), contact time (5–360 min), temperature (25–55 °C) and initial dye concentration (10–250 ppm) was examined as a function. The obtained data were evaluated with kinetic and isotherm models. Using adsorption equilibrium data obtained from MB adsorption studies using m-WCH and m-OCH biocomposite adsorbents, their suitability to Langmuir, Freundlich, Stachard, Dubinin–Radushkevich and Temkin models was examined. The empirical data of MB adsorption by m-WCH and m-OCH showed agreement with the Langmuir isotherm model. The maximum adsorption capacity for MB by m-WCH and m-OCH was estimated to be 85.47 mg g−1 and 53.48 mg g−1, respectively. The result showed that a higher adsorption selectivity on m-WCH compares to m-OCH. Among the kinetic models applied, the pseudo-second-order kinetic model was identified with the highest regression coefficients. In the light of these results, it was determined that there are new promising adsorbents of natural origin, with higher adsorption capacity, lower cost, and alternatives to commercially used adsorbents in the removal of MB from aqueous media. Graphical abstract

Funder

Konya Technical University

Publisher

Springer Science and Business Media LLC

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3