Abstract
AbstractStructure–properties relationship in complex rubber nanocomposites is a key for enlarging the performance window. Herein, halloysite nanotubes (HNTs) are added at variable content to ethylene-propylene diene monomer (EPDM)/nitrile butadiene rubber (NBR) rubber blends compatibilized with maleic anhydride grafted HNTs to evaluate cure characteristics, along with microstructure, and mechanical and swelling behavior. The crosslinking rate increased by HNTs loading, but the scorch time decreased. Moreover, a 45% rise in tensile strength was observed for systems containing 10 wt% HNTs. SEM and TEM micrographs revealed a rough fracture surface with proper dispersion of HNT within EPDM/NBR. The modulus of EPDM/NBR/HNTs nanocomposites is theoretically estimated by modified Kolarik model, demonstrating a good agreement with experimental value. Dynamic mechanical thermal analysis (DMTA) revealed a higher storage modulus up to 2.27 GPa with the introduction of HNTs into EPDM/NBR compound. Correspondingly, lower solvent uptake (decreased by 38%) is reported. Thermogravimetric analysis (TGA) revealed higher thermal stability for highly-loaded systems.
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Polymers and Plastics,Condensed Matter Physics,General Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献