Author:
Alishvandi Ali,Karimi Javad,Damari Siavash,Moayedi Far Arsham,Setodeh Pour Mohammad,Ahmadi Morteza
Publisher
Springer Science and Business Media LLC
Subject
Civil and Structural Engineering
Reference29 articles.
1. Ahmad, A., Ahmad, W., Aslam, F., & Joyklad, P. (2022). Compressive strength prediction of fly ash-based geopolymer concrete via advanced machine learning techniques. Case Studies in Construction Materials, 16(August 2021), e00840. https://doi.org/10.1016/j.cscm.2021.e00840
2. Ahmad, A., Ostrowski, K. A., Maślak, M., Farooq, F., Mehmood, I., & Nafees, A. (2021a). Comparative study of supervised machine learning algorithms for predicting the compressive strength of concrete at high temperature. Materials. https://doi.org/10.3390/ma14154222
3. Ahmad, W., Ahmad, A., Ostrowski, K. A., Aslam, F., Joyklad, P., & Zajdel, P. (2021b). Application of advanced machine learning approaches to predict the compressive strength of concrete containing supplementary cementitious materials. Materials. https://doi.org/10.3390/ma14195762
4. Alencar, D., Carvalho, D., Koenders, E., Mourão, F., & Rocha, L. (2017). Devising a computational model based on data mining techniques to predict concrete compressive strength. Procedia Computer Science, 108, 455–464. https://doi.org/10.1016/j.procs.2017.05.018
5. Amlashi, A Tavana, Ghanizadeh, A. R., & ... (2020). Developing three hybrid machine learning algorithms for predicting the mechanical properties of plastic concrete samples with different geometries. AUT Journal of Civil 4(1), 37–54. https://ajce.aut.ac.ir/article_3335.html