Schlieren measurements of shock train flow fields in a supersonic cylindrical isolator at Mach 2

Author:

Ou YangORCID,Xiong Bing,Dai Yifan,Fan Xiaoqiang,Chen Shanyong,Xu Shangcheng,Yan Yuepeng,Hu Hao,Xiong Yupeng,Du Chunyang,Guan Chaoliang

Abstract

AbstractIn a supersonic cylindrical isolator at Mach 2, the structures and frequency characteristics of shock train flow fields were experimentally studied by the schlieren measurement method. According to the design principle of parallel light through schlieren windows in a cylindrical duct, a high-precision conformal optical window pair was designed and integratively processed before. Based on a self-built pipeline structure with conformal windows in a direct-connect wind tunnel under adjustable back-pressure conditions, the shock surfaces in a cylindrical isolator at Mach 2 were first captured by the schlieren method. Then, the schlieren photographs were corrected by a nonlinear image transformation algorithm for the restoration of real shock train structures, and the experimental results were compared with numerical simulation results quantitatively. Finally, the shock train positions were calculated by an image recognition algorithm to analyze the self-excited oscillation frequency characteristics of shock train structures. The methods and experiments in this study enriched optical observation methods of supersonic flows through non-rectangular cross-section isolators in scramjet. Graphical abstract

Funder

State Key Laboratory of High Performance Complex Manufacturing

National Natural Science Foundation of China

NUDT Research Project

Innovative Research Group Project of the National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3