Abstract
AbstractSelf-adjoint operators in smooth Banach spaces have been already defined in recent works. Here, we extend the concept of adjoint of an operator to the scope of (non-necessarily Hilbert) Banach spaces, obtaining in particular the notion of self-adjoint operator in the non-smooth case. As a consequence, we define the probability density operator on Banach spaces and verify most of its well-known properties.
Funder
Ministerio de Ciencia e Innovacióón
Consejería de Economía, Conocimiento, Empresas y Universidad, Junta de Andalucía
Universidad de Cadiz
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,General Mathematics
Reference28 articles.
1. Acosta, M.D., Aizpuru, A., Aron, R.M., García-Pacheco, F.J.: Functionals that do not attain their norm. Bull. Belg. Math. Soc. Simon Stevin 14(3), 407–418 (2007)
2. Aizpuru, A., García-Pacheco, F.J.: $$ \sf L^2$$-summand vectors in Banach spaces. Proc. Amer. Math. Soc. 134(7), 2109–2115 (2006)
3. Aizpuru, A., Pérez-Fernández, F.J.: Characterizations of series in Banach spaces. Acta Math. Univ. Comenian. (N.S.) 68(2), 337–344 (1999)
4. Aizpuru, A., Pérez-Fernández, F.J.: Sequence spaces associated to a series in a Banach space. Indian J. Pure Appl. Math. 33(9), 1317–1329 (2002)
5. Bandyopadhyay, P., Lin, B.: Some properties related to nested sequence of balls in Banach spaces. Taiwanese J. Math. 5, 19–34 (2001)