Model-based design of crop diversification through new field arrangements in spatially heterogeneous landscapes. A review

Author:

Hernández-Ochoa Ixchel M.ORCID,Gaiser Thomas,Kersebaum Kurt-Christian,Webber Heidi,Seidel Sabine Julia,Grahmann Kathrin,Ewert Frank

Abstract

AbstractIntensive agriculture in Germany is not only highly productive but has also led to detrimental effects in the environment. Crop diversification together with new field arrangements considering soil heterogeneities can be an alternative to improve resource use efficiency (RUE), ecosystem services (ESS), and biodiversity. Agroecosystem models are tools that help us to understand and design diversified new field arrangements. The main goal of this study was to review the extent to which agroecosystem models have been used for crop diversification design at field and landscape scale by considering soil heterogeneities and to understand the model requirements for this purpose. We found several agroecosystem models available for simulating spatiotemporal crop diversification at the field scale. For spatial crop diversification, simplified modelling approaches consider crop interactions for light, water, and nutrients, but they offer restricted crop combinations. For temporal crop diversification, agroecosystem models include the major crops (e.g., cereals, legumes, and tuber crops). However, crop parameterization is limited for marginal crops and soil carbon and nitrogen (N). At the landscape scale, decision-making frameworks are commonly used to design diversified cropping systems. Within-field soil heterogeneities are rarely considered in field or landscape design studies. Combining static frameworks with dynamic agroecosystems models can be useful for the design and evaluation of trade-offs for ESS delivery and biodiversity. To enhance modeling capabilities to simulate diversified cropping systems in new field arrangements, it will be necessary to improve the representation of crop interactions, the inclusion of more crop species options, soil legacy effects, and biodiversity estimations. Newly diversified field arrangement design also requires higher data resolution, which can be generated via remote sensing and field sensors. We propose the implementation of a framework that combines static approaches and process-based models for new optimized field arrangement design and propose respective experiments for testing the combined framework.

Funder

deutsche forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3