Adaptive intelligent vision-based control of a flexible-link manipulator

Author:

Sahu Umesh Kumar,Patra Dipti,Subudhi Bidyadhar

Abstract

AbstractPresent space robots such as planetary robots and flexible robots have structural flexibility in their arms and joints that leads to an error in the tip positioning owing to tip deflection. The flexible-link manipulator (FLM) is a non-collocated system that has unstable and inaccurate system performance. Thus, tip-tracking of FLM possesses difficult control challenges. The purpose of this study is to design adaptive intelligent tip-tracking control strategy for FLMs to deal with this control challenges of FLM. A vision sensor is utilized in conjunction with a traditional mechanical sensor to directly measure tip-position in order to address the aforementioned problem. Image-based visual servoing (IBVS), one of several visual servoing control techniques, is more efficient. However, the IBVS scheme faces numerous difficulties that impair the system’s performance in real-time applications, including singularities in the interaction matrix, local minima in trajectory, visibility issues. To address the issues with the IBVS scheme, a novel adaptive intelligent IBVS (AI-IBVS) controller for tip-tracking control of a two-link flexible manipulator (TLFM) is designed in this study. In particular, this paper addresses the IBVS issues along-with retention of visual features in the field-of-view (FOV). First, in order to retain object within the camera FOV, an intelligent controller with off-policy reinforcement learning (RL) is proposed. Second, a composite controller for TLFM is developed to combine RL controller and IBVS controller. The simulation has been conducted to examine the effectiveness and robustness of the proposed controller. The obtained results show that the AI-IBVS controller developed here possesses the capabilities of self-learning and decision-making for robust tip-tracking control of TLFM. Further, a comparison with other similar approach is presented.

Funder

Manipal Academy of Higher Education, Manipal

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Electrical and Electronic Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Elliptical Features for Image-Based Visual Servoing Toward Control of UR5 Robot Arm Manipulator;2024 International Conference on Innovations and Challenges in Emerging Technologies (ICICET);2024-06-07

2. Dynamic Modelling and Intelligent Hybrid Optimal Controller of Hybrid Manipulator for Vibration Suppression and Tracking Control;Arabian Journal for Science and Engineering;2023-11-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3