Abstract
AbstractGiven $$E_0, E_1, F_0, F_1, E$$
E
0
,
E
1
,
F
0
,
F
1
,
E
rearrangement invariant function spaces, $$a_0$$
a
0
, $$a_1$$
a
1
, $$\mathrm {b}_0$$
b
0
, $$\mathrm {b}_1$$
b
1
, $$\mathrm {b}$$
b
slowly varying functions and $$0< \theta _0<\theta _1<1$$
0
<
θ
0
<
θ
1
<
1
, we characterize the interpolation spaces $$\begin{aligned} \big ({\overline{X}}^{{\mathcal {R}}}_{\theta _0,\mathrm {b}_0,E_0,a_0,F_0}, {\overline{X}}^{{\mathcal {R}}}_{\theta _1, \mathrm {b}_1,E_1,a_1,F_1}\big )_{\theta ,\mathrm {b},E},\quad \big ({\overline{X}}^{{\mathcal {L}}}_{\theta _0, \mathrm {b}_0,E_0,a_0,F_0}, {\overline{X}}^{\mathcal L}_{\theta _1,\mathrm {b}_1,E_1,a_1,F_1}\big )_{\theta ,\mathrm {b},E} \end{aligned}$$
(
X
¯
θ
0
,
b
0
,
E
0
,
a
0
,
F
0
R
,
X
¯
θ
1
,
b
1
,
E
1
,
a
1
,
F
1
R
)
θ
,
b
,
E
,
(
X
¯
θ
0
,
b
0
,
E
0
,
a
0
,
F
0
L
,
X
¯
θ
1
,
b
1
,
E
1
,
a
1
,
F
1
L
)
θ
,
b
,
E
and $$\begin{aligned} \big ({\overline{X}}^{{\mathcal {R}}}_{\theta _0,\mathrm {b}_0,E_0,a_0,F_0}, {\overline{X}}^{{\mathcal {L}}}_{\theta _1, \mathrm {b}_1,E_1,a_1,F_1}\big )_{\theta ,\mathrm {b},E},\quad \big ({\overline{X}}^{{\mathcal {L}}}_{\theta _0, \mathrm {b}_0,E_0,a_0,F_0}, {\overline{X}}^{\mathcal R}_{\theta _1,\mathrm {b}_1,E_1,a_1,F_1}\big )_{\theta ,\mathrm {b},E}, \end{aligned}$$
(
X
¯
θ
0
,
b
0
,
E
0
,
a
0
,
F
0
R
,
X
¯
θ
1
,
b
1
,
E
1
,
a
1
,
F
1
L
)
θ
,
b
,
E
,
(
X
¯
θ
0
,
b
0
,
E
0
,
a
0
,
F
0
L
,
X
¯
θ
1
,
b
1
,
E
1
,
a
1
,
F
1
R
)
θ
,
b
,
E
,
for all possible values of $$\theta \in [0,1]$$
θ
∈
[
0
,
1
]
. Applications to interpolation identities for grand and small Lebesgue spaces, Gamma spaces and A and B-type spaces are given.
Publisher
Springer Science and Business Media LLC
Subject
General Mathematics,Theoretical Computer Science,Analysis