How much does the rainfall temporal resolution affect rainfall thresholds for landslide triggering?

Author:

Gariano Stefano LuigiORCID,Melillo Massimo,Peruccacci Silvia,Brunetti Maria Teresa

Abstract

AbstractIn many areas of the world, the prediction of rainfall-induced landslides is usually carried out by means of empirical rainfall thresholds. Their definition is complicated by several issues, among which are the evaluation and quantification of diverse uncertainties resulting from data and methods. Threshold effectiveness and reliability strongly depend on the quality and quantity of rainfall measurements and landslide information used as input. In this work, the influence of the temporal resolution of rainfall measurements on the calculation of landslide-triggering rainfall thresholds is evaluated and discussed. For the purpose, hourly rainfall measurements collected by 172 rain gauges and geographical and temporal information on the occurrence of 561 rainfall-induced landslides in Liguria region (northern Italy) in the period 2004–2014 are used. To assess the impact of different temporal resolutions on the thresholds, rainfall measurements are clustered in increasing bins of 1, 3, 6, 12 and 24 h. A comprehensive tool is applied to each dataset to automatically reconstruct the rainfall conditions responsible for the failures and to calculate frequentist cumulated event rainfall–rainfall duration (ED) thresholds. Then, using a quantitative procedure, the calculated ED thresholds are validated. The main finding of the work is that the use of rainfall measurements with different temporal resolutions results in considerable variations of the shape and the validity range of the thresholds. Decreasing the rainfall temporal resolution, thresholds with smaller intercepts, higher slopes, shorter ranges of validity and higher uncertainties are obtained. On the other hand, it seems that the rainfall temporal resolution does not influence the validation procedure and the threshold performance indicators. Overall, the use of rainfall data with coarse temporal resolution causes a systematic underestimation of thresholds at short durations, resulting in relevant drawbacks (e.g. false alarms) if the thresholds are implemented in operational systems for landslide prediction.

Funder

Dipartimento della Protezione Civile, Presidenza del Consiglio dei Ministri

Natural Environment Research Council

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3