Abstract
AbstractThis study uses a state-of-the-art regional climate model (RCM) to examine how tropical deforestation affects the meteorology of the Indian Summer Monsoon (ISM). Incorporating insights from existing research on deforestation by climate scientists, alongside evidence of environmental deterioration in semi-arid, hilly and tropical regions of Southeast Asia, this research seeks to elucidate the critical influence of anthropogenic reasons of climate change on the hydroclimate of ISM. Employing “tropical deforestation” design experiments with the ICTP-RegCMv4.4.5.10 RCM the study evaluates the effects on meteorological parameters including precipitation, circulation patterns and surface parameters. This experimental design entails substituting vegetation type in the land use map of RegCMv4.4.5.10 model, such as deciduous and evergreen trees in Southeast Asia with “short grass” to mimic tropical deforestation. Findings reveal that deforestation induces abnormal anti-cyclonic circulation over eastern India curtails moisture advection, diminishing latent heat flux and moisture transport, leads to a decrease in precipitation compared to control experiment scenario. Alterations in albedo and vegetation roughness length attributable to deforestation impact temperature, humidity, precipitation, consequently exacerbating drought and heatwave occurrences. Additionally, the study also explores deforestation-induced feedback on ISM precipitation variability. The study concludes that deforestation substantially alters land-surface characteristics, water and energy cycle, and atmospheric circulation, thereby influencing regional climate dynamics. These findings offer foundational insights into comprehending land-use and land-cover changes and their implications for climate change adaptation strategies.
Publisher
Springer Science and Business Media LLC