Comparative analysis of multiple conventional neural networks for landslide susceptibility mapping
Author:
Publisher
Springer Science and Business Media LLC
Subject
Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Water Science and Technology
Link
https://link.springer.com/content/pdf/10.1007/s11069-022-05570-x.pdf
Reference112 articles.
1. Akgun A (2012) A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: a case study at İzmir. Turk Landslides 9(1):93–106
2. Anthimopoulos M et al (2016) Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans Med Imaging 35(5):1207–1216
3. Aslam B et al (2021) Development of integrated deep learning and machine learning algorithm for the assessment of landslide hazard potential. Soft Comput 25(21):13493–13512
4. Aslam B et al (2022) Comparison of multiple conventional and unconventional machine learning models for landslide susceptibility mapping of Northern part of Pakistan. Environ, Develop Sustain: 1–28
5. Bacha AS et al (2018) Landslide inventory and susceptibility modelling using geospatial tools, in Hunza-Nagar valley, northern Pakistan. J Mt Sci 15(6):1354–1370
Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Landslide susceptibility assessment and mapping using new ensemble model;Advances in Space Research;2024-10
2. Exploring advanced machine learning techniques for landslide susceptibility mapping in Yanchuan County, China;Earth Science Informatics;2024-08-27
3. Enhancing landslide susceptibility mapping incorporating landslide typology via stacking ensemble machine learning in Three Gorges Reservoir, China;Geoscience Frontiers;2024-07
4. Evaluating landslide susceptibility and landscape changes due to road expansion using optimized machine learning;Natural Hazards;2024-06-14
5. The generative adversarial neural network with multi-layers stack ensemble hybrid model for landslide prediction in case of training sample imbalance;Stochastic Environmental Research and Risk Assessment;2024-04-26
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3