1. Abadi Martín,Agarwal A, Barham P, Brevdo E, Chen Z,Citro C, Corrado GS,Davis A, Dean J, Devin M,Ghemawat S, Goodfellow I, Harp A, Irving G,Isard M, Jia Y, Jozefowicz R, Kaiser L,Kudlur M, Levenberg J, Mané D, Monga R,Moore S, Murray D, Olah C, Schuster M,Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P,Vanhoucke V, Vasudevan V, Viégas F,Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y,Zheng X (2015) TensorFlow: large-scale machine learning onheterogeneous systems, 2015. URL https://www.tensorflow.org/
2. Abu-Jamous B, Fa R, Nandi A (2015) Feature selection, chapter 8, pages 109–117. John Wiley & Sons, Ltd, ISBN 9781118906545. https://doi.org/10.1002/9781118906545.ch8
3. Achour Y, Pourghasemi HR (2020) How do machine learning techniques help in increasing accuracy of landslide susceptibility maps? Geosci Front, 11(3):871–883, ISSN 1674-9871. https://doi.org/10.1016/j.gsf.2019.10.001
4. Alvarado-Franco JP, Castro D, Estrada N, Caicedo B, ánchez-Silva MS, Camacho LA, Muñoz F (2017) Quantitative-mechanistic model for assessing landslide probability and pipeline failure probability due to landslides. Eng Geol, 222:212–224, ISSN 0013-7952. https://doi.org/10.1016/j.enggeo.2017.04.005
5. Bedoya-González DA, Vargas-Jiménez CA, Chicangana G (2014) Modelos de atenuación para una zona del piedemonte llanero colombiano utilizando atenuación de ondas coda. Boletin de Geología, 36:91–100, ISSN 0120-0283. URL https://revistas.uis.edu.co/index.php/revistaboletindegeologia/article/view/4477