Risk assessment and management of vulnerable areas to flash flood hazards in arid regions using remote sensing and GIS-based knowledge-driven techniques

Author:

Abdelkareem Mohamed,Mansour Abbas M.

Abstract

AbstractEarth Observation from space has allowed characterizing, detecting, and managing natural hazards in spatiotemporal scale. Flash flood is the most frequent natural disaster that causes destruction to human lives, the economy, and infrastructure. Thus, developing a flash flood hazard zone (FFHZ) map is significant for comprehensive flash flood risk assessment and management to minimize its harmful effects, particularly in residential areas, because of climate change. Therefore, in this article, ten parameters derived from satellite images, including lithology, slope, topographic wetness index (TWI), Stream Power Index (SPI), Stream Transport Index (STI), Terrain Roughness Index (TRI), drainage density (Dd), distance to river, radar intensity map, and rainfall distribution map, were fused to predict the flood-vulnerable areas through GIS-based overlay analysis after normalization and assigning weight by applying Analytical Hierarchy Analysis (AHP). The findings allowed for the identification of the most vulnerable areas and provided an explanation for the flood's effects on New Qena City (NQC). The output FFHZs of the Wadi Qena Basin (WQB) were divided into six hazard zones, i.e., extreme hazard (6.86%), very strong (15.04%), strong (18.74%), moderate (22.58%), low (22.80%), and very low (13.98%) susceptibility. Furthermore, approximately 35% of the under-construction NQC is subject to the extreme to very serious hazards, as opposed to the extension area to NQC east of the Qena-Safaga Road. Interferometry Synthetic Aperture Radar (InSAR) change detection coherence (CCD) and spatiotemporal analysis of Landsat and Sentinel-2 data revealed steady changes in vegetation and infrastructure from 1984 to present. Based on GIS analyses about 10, and 14% of the NQC can be inundated if the flood extends 500, and 1000 m around the flood canal, respectively. Thus, several strategies were advised to safeguard the development projects, particularly the residential sections of the under construction NQC, including erecting four dams with a total capacity of 300 million m3, reinforce the dam at Wadi Shahadein, constructing concrete chevron bunds along the flood zone, and extending the depths of the flooding canal.

Funder

South Valley University

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Water Science and Technology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3