Investigating the drivers of the unprecedented Chernobyl Power Plant Wildfire in April 2020 and its effects on 137Cs dispersal

Author:

Newman-Thacker FionaORCID,Turnbull LauraORCID

Abstract

AbstractIn this study, we explore the conditions that led to the unprecedented wildfire that occurred in the Chernobyl Exclusion Zone in April 2020 and the effect of this fire on 137Cs dispersal, as wildfires are important drivers of 137Cs resuspension, with potentially harmful consequences for the receiving ecosystems. We characterised the historical wildfire record between 2000 and 2020 using the MCD64A1.006 MODIS Burned Area Monthly Global 500 m dataset and assessed the climatic conditions associated with these wildfire events using ERA5-Land reanalysis data. We also examined fire danger indices at the time of these wildfires. We then explored the widespread effects of the April 2020 wildfire on 137Cs resuspension and subsequent deposition using the NOAA-HYSPLIT model, concluding that the impacts of such resuspension on areas further afield were minimal. Results show that climatic conditions leading to severe wildfires are increasing, especially during March and April. High soil moisture, relative humidity and extreme temperature anomalies are associated with the largest wildfires on record, and fire risk indices at the time of the April 2020 fire were higher than for other large fires on record. We have estimated that 3854 GBq of 137Cs resuspended during the CPPF, with atmospheric transport dominant over Russia, Ukraine, Moldova and Kazakhstan. The observed increase in large wildfires will have implications for wildfire-driven soil erosion processes, which will further exacerbate the effects of atmospheric-driven 137Cs redistribution.

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3