Abstract
AbstractIn the context of content-based recommender systems, the aim of this paper is to determine how better profiles can be built and how these affect the recommendation process based on the incorporation of temporality, i.e. the inclusion of time in the recommendation process, and topicality, i.e. the representation of texts associated with users and items using topics and their combination. To that end, we build both topically and temporally homogeneous subprofiles to represent items. The main contribution of the paper is to present two different ways of hybridising these two dimensions and to evaluate and compare them with other alternatives. Our proposals and experiments are carried out in the specific context of publication venue recommendation.
Funder
Ministerio de Economía y Competitividad
Junta de Andalucía y Universidad de Granada
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Human-Computer Interaction,Education
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献