Interplay between upsampling and regularization for provider fairness in recommender systems

Author:

Boratto LudovicoORCID,Fenu GianniORCID,Marras MirkoORCID

Abstract

AbstractConsidering the impact of recommendations on item providers is one of the duties of multi-sided recommender systems. Item providers are key stakeholders in online platforms, and their earnings and plans are influenced by the exposure their items receive in recommended lists. Prior work showed that certain minority groups of providers, characterized by a common sensitive attribute (e.g., gender or race), are being disproportionately affected by indirect and unintentional discrimination. Our study in this paper handles a situation where (i) the same provider is associated with multiple items of a list suggested to a user, (ii) an item is created by more than one provider jointly, and (iii) predicted user–item relevance scores are biasedly estimated for items of provider groups. Under this scenario, we assess disparities in relevance, visibility, and exposure, by simulating diverse representations of the minority group in the catalog and the interactions. Based on emerged unfair outcomes, we devise a treatment that combines observation upsampling and loss regularization, while learning user–item relevance scores. Experiments on real-world data demonstrate that our treatment leads to lower disparate relevance. The resulting recommended lists show fairer visibility and exposure, higher minority item coverage, and negligible loss in recommendation utility.

Funder

Università degli Studi di Cagliari

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Human-Computer Interaction,Education

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Understanding Biases in ChatGPT-based Recommender Systems: Provider Fairness, Temporal Stability, and Recency;ACM Transactions on Recommender Systems;2024-08-28

2. Personalized Beyond-accuracy Calibration in Recommendation;Proceedings of the 2024 ACM SIGIR International Conference on Theory of Information Retrieval;2024-08-02

3. Overcoming Diverse Undesired Effects in Recommender Systems: A Deontological Approach;ACM Transactions on Intelligent Systems and Technology;2024-07-27

4. International Workshop on Algorithmic Bias in Search and Recommendation (BIAS);Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval;2024-07-10

5. Optimizing Neighborhoods for Fair Top-N Recommendation;Proceedings of the 32nd ACM Conference on User Modeling, Adaptation and Personalization;2024-06-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3