Rank-sensitive proportional aggregations in dynamic recommendation scenarios

Author:

Balcar StepanORCID,Skrhak Vit,Peska LadislavORCID

Abstract

AbstractIn this paper, we focus on the problem of rank-sensitive proportionality preservation when aggregating outputs of multiple recommender systems in dynamic recommendation scenarios. We believe that individual recommenders may provide complementary views on the user’s preferences or needs, and therefore, their proportional (i.e. unbiased) aggregation may be beneficial for the long-term user satisfaction. We propose an aggregation framework (FuzzDA) based on a modified D’Hondt’s algorithm (DA) for proportional mandates allocation. Specifically, we adjusted DA to register fuzzy membership of items and modified the selection procedure to balance both relevance and proportionality criteria. Furthermore, we propose several iterative votes assignment strategies and negative implicit feedback incorporation strategies to make FuzzDA framework applicable in dynamic recommendation scenarios. Overall, the framework should provide benefits w.r.t. long-term novelty of recommendations, diversity of recommended items as well as overall relevance. We evaluated FuzzDA framework thoroughly both in offline simulations and in online A/B testing. Framework variants outperformed baselines w.r.t. click-through rate (CTR) in most of the evaluated scenarios. Some variants of FuzzDA also provided the best or close-to-best iterative novelty (while maintaining very high CTR). While the impact of the framework variants on user-wise diversity was not so extensive, the trade-off between CTR and diversity seems reasonable.

Funder

Grantová Agentura Ceské Republiky

Univerzita Karlova v Praze

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Human-Computer Interaction,Education

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3