Convergence error analysis of reflected gradient Langevin dynamics for non-convex constrained optimization

Author:

Sato Kanji,Takeda Akiko,Kawai ReiichiroORCID,Suzuki Taiji

Abstract

AbstractGradient Langevin dynamics and a variety of its variants have attracted increasing attention owing to their convergence towards the global optimal solution, initially in the unconstrained convex framework while recently even in convex constrained non-convex problems. In the present work, we extend those frameworks to non-convex problems on a non-convex feasible region with a global optimization algorithm built upon reflected gradient Langevin dynamics and derive its convergence rates. By effectively making use of its reflection at the boundary in combination with the probabilistic representation for the Poisson equation with the Neumann boundary condition, we present promising convergence rates, particularly faster than the existing one for convex constrained non-convex problems.

Funder

JSPS

Publisher

Springer Science and Business Media LLC

Reference50 articles.

1. Raginsky, M., Rakhlin, A., Telgarsky, M.: Non-convex learning via stochastic gradient Langevin dynamics: a nonasymptotic analysis. In: Proceedings of the 2017 Conference on Learning Theory. Proceedings of Machine Learning Research, vol. 65, pp. 1674–1703 (2017)

2. Welling, M., Teh, Y.W.: Bayesian learning via stochastic gradient Langevin dynamics. In: Proceedings of the 28th International Conference on Machine Learning, pp. 681–688 (2011)

3. Chiang, T.-S., Hwang, C.-R., Sheu, S.J.: Diffusion for global optimization in $$\mathbb{R} ^n$$. SIAM J. Control Optim. 25(3), 737–753 (1987)

4. Gelfand, S.B., Mitter, S.K.: Recursive stochastic algorithms for global optimization in $$\mathbb{R} ^d$$. SIAM J. Control Optim. 29(5), 999–1018 (1991)

5. Geman, S., Hwang, C.-R.: Diffusions for global optimization. SIAM J. Control Optim. 24(5), 1031–1043 (1986)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3