1. Raginsky, M., Rakhlin, A., Telgarsky, M.: Non-convex learning via stochastic gradient Langevin dynamics: a nonasymptotic analysis. In: Proceedings of the 2017 Conference on Learning Theory. Proceedings of Machine Learning Research, vol. 65, pp. 1674–1703 (2017)
2. Welling, M., Teh, Y.W.: Bayesian learning via stochastic gradient Langevin dynamics. In: Proceedings of the 28th International Conference on Machine Learning, pp. 681–688 (2011)
3. Chiang, T.-S., Hwang, C.-R., Sheu, S.J.: Diffusion for global optimization in $$\mathbb{R} ^n$$. SIAM J. Control Optim. 25(3), 737–753 (1987)
4. Gelfand, S.B., Mitter, S.K.: Recursive stochastic algorithms for global optimization in $$\mathbb{R} ^d$$. SIAM J. Control Optim. 29(5), 999–1018 (1991)
5. Geman, S., Hwang, C.-R.: Diffusions for global optimization. SIAM J. Control Optim. 24(5), 1031–1043 (1986)