3D reflection seismic imaging of natural gas/fluid escape features in the deep-water Orange Basin of South Africa

Author:

Maduna N. G.,Manzi M. S. D.,Bourdeau J. E.,Jinnah Z.

Abstract

AbstractMany features indicative of natural gas and oil leakage are delineated in the deep-water Orange Basin offshore South Africa using 3D reflection seismic data. These features are influenced by the translational and compressional domains of an underlying Upper Cretaceous deep-water fold-and-thrust belt (DWFTB) system detaching Turonian shales. The origin of hydrocarbons is postulated to be from both: (a) thermogenic sources stemming from the speculative Turonian and proven Aptian source rocks at depth; and (b) biogenic sources from organic-rich sediments in the Cenozoic attributed to the Benguela Current upwelling system. The late Campanian surface has a dense population of > 950 pockmarks classified into three groups based on their variable shapes and diameter: giant (> 1500 m), crater (~ 700–900 m) and simple (< 500 m) pockmarks. A total of 85 simple pockmarks are observed on the present-day seafloor in the same area as those imaged on the late Campanian surface found together with mass wasting. A major slump scar in the north surrounds a ~ 4200 m long, tectonically controlled mud volcano. The vent of the elongated mud volcano is near-vertical and situated along the axis of a large anticline marking the intersection of the translational and compressional domains. Along the same fold further south, the greatest accumulation of hydrocarbons is indicated by a positive high amplitude anomaly (PHAA) within a late Campanian anticline. Vast economical hydrocarbon reservoirs have yet to be exploited from the deep-water Orange Basin, as evidenced by the widespread occurrence of natural gas/fluid escape features imaged in this study.

Funder

National Research Foundation

Council for Geoscience

University of the Witwatersrand

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,Geophysics,Oceanography

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3