Cluster Modeling of Network-Forming Amorphization Pathways in AsxS100−x Arsenicals (50 ≤ x ≤ 57) Diven by Nanomilling

Author:

Shpotyuk OlehORCID,Hyla Malgorzata,Shpotyuk Yaroslav,Balitska Valentina,Kozdras Andrzej,Boyko Vitaliy

Abstract

AbstractComplete hierarchy of network amorphization scenarios initiated in AsxS100-x nanoarsenicals within As4S4-As4S3 cut-Sect. (50 ≤ x ≤ 57) is reconstructed employing materials-computational approach based on ab-initio quantum-chemical modeling code (CINCA). Under nanostructurization due to high-energy mechanical milling, the inter-crystalline transformations to nanoscopic β-As4S4 phase accompanied by appearance of covalent-network amorphous matrix are activated. General amorphization trend under nanomilling obeys tending from molecular cage-like structures to optimally-constrained covalent-bonded networks compositionally invariant with parent arsenical. The contribution of amorphization paths in nanoarsenicals is defined by their chemistry with higher molecular-to-network barriers proper to As4S3-rich alloys. The generated amorphous phase is intrinsically decomposed, possessing double-Tg relaxation due to stoichiometric (x = 40) and non-stoichiometric (x > 40) sub-networks, which are built of AsS3/2 pyramids and As-rich arrangement keeping (i) two separated As-As bonds derived from realgar-type molecules, (ii) two neighboring As-As bonds derived from pararealgar-type molecules or (iii) three neighboring As-As bonds in triangle-like geometry derived from dimorphite-type molecules. Compositional invariance of nanoamorphous phase is ensured by growing sequence of network-forming clusters with average coordination numbers Z in the row (As2S4/2,Z = 2.50) – (As3S5/2, Z = 2.55) – (As3S3/2, Z = 2.67). Diversity of main molecular-to-network amorphizing pathways in nanoarsenicals is reflected on the unified potential energy landscape specified for boundary As4S4 and As4S3 components.

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science,Biochemistry,General Chemistry

Reference46 articles.

1. A. Hruby and J. Non-Cryst (1978). Solids 28, 139.

2. Z. U. Borisova, Glassy Semiconductors. (Plenum Press, New York, 1981), pp. 1–505.

3. A. Feltz, Amorphous Inorganic Materials and Glasses. (VCH Publ, New York, 1993), pp. 1–446.

4. A. L. Emelina, A. S. Alikhanian, A. V. Steblevskii, and E. N. Kolosov (2007). Inorg. Mater. 43, 95.

5. J.-L. Adam, X. Zhang (Eds.), Chalcogenide glasses: Preparation, properties and applications. (Woodhead Publ. Ser. in Electronics and Optical Mater., Philadelphia-New Delhi, 2013), pp. 1–716.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3